If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x^2)-(42x)+160=0
a = 2; b = -42; c = +160;
Δ = b2-4ac
Δ = -422-4·2·160
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-22}{2*2}=\frac{20}{4} =5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+22}{2*2}=\frac{64}{4} =16 $
| 14x+2=360 | | (2*x²)-(42*x)+160=0 | | g=104 | | 4(m-2)-(m+3)=-1 | | (17-5x)^2=0 | | 2*x²-42*x+160=0 | | x-3÷2=11 | | 2x²-42x+160=0 | | 2*x²-(42*x)+160=0 | | 2x-6+x=30 | | -3(x-1)=5-2x | | -x+4=x-4 | | 3x-4=-20+8x | | 5(2k-3)=2(k-2)+5 | | 6x-15=7x+11 | | A=22/7x8 | | 4x+3x=159 | | 7=9–3c | | -4x+10=98 | | 4-j=0 | | 2x^2-42x+160=0 | | x²-11x-4=2x-18 | | B=-(2x+3)-2x | | x^2-42x+160=0 | | 5x+2=-10-3x-4 | | 2a+2=1 | | x^2+42x+160=0 | | -3-4=7y-14 | | 12(p−17)=192 | | 6v+v=3v+33 | | 6x-13=8x-5 | | x^2-(20*x)+64=0 |